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REPORT

Improved Power by Use of a Weighted Score Test for Linkage
Disequilibrium Mapping
Tao Wang and Robert C. Elston

Association studies offer an exciting approach to finding underlying genetic variants of complex human diseases. However,
identification of genetic variants still includes difficult challenges, and it is important to develop powerful new statistical
methods. Currently, association methods may depend on single-locus analysis—that is, analysis of the association of one
locus, which is typically a single-nucleotide polymorphism (SNP), at a time—or on multilocus analysis, in which multiple
SNPs are used to allow extraction of maximum information about linkage disequilibrium (LD). It has been shown that
single-locus analysis may have low power because a single SNP often has limited LD information. Multilocus analysis,
which is more informative, can be performed on the basis of either haplotypes or genotypes. It may lose power because
of the often large number of degrees of freedom involved. The ideal method must make full use of important information
from multiple loci but avoid increasing the degrees of freedom. Therefore, we propose a method to capture information
from multiple SNPs but with the use of fewer degrees of freedom. When a set of SNPs in a block are correlated because
of LD, we might expect that the genotype variation among the different phenotypic groups would extend across all the
SNPs, and this information could be compressed into the low-frequency components of a Fourier transform. Therefore,
we develop a test based on weighted Fourier transformation coefficients, with more weight given to the low-frequency
components. Our simulation results demonstrate the validity and substantially higher power of the proposed method
compared with other common methods. This method provides an additional tool to existing methods for identification
of causative genetic variants underlying complex diseases.
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Association studies are an important method for detecting
genetic variants for human traits or diseases. Recent de-
velopment of large-scale genotyping techniques, along
with a rapid drop in genotyping costs, makes it possible
to use this approach in a systematic way. Nonetheless,
identification of genetic variants underlying susceptibility
to complex human diseases still includes challenges. One
of those challenges is to develop powerful statistical tools.
Among other factors, the power of association analysis
depends partly on the linkage disequilibrium (LD) pattern
in a specific region of the genome. It has been shown that
LD patterns are quite variable in the genome.1–3

In this report, we focus on multiple correlated SNPs ge-
notyped in a block. Various statistical methods have been
developed for exploring the existence of a causative var-
iant. Single-locus analysis can be very inefficient because
a single SNP marker may have little information for pre-
dicting a causative variant. In this case, the joint infor-
mation from all available SNPs can be extremely useful
for obtaining a powerful test.

Multilocus analysis may depend directly on either hap-
lotypes or genotypes. A useful discussion, among others,
about haplotype-based analysis versus genotype-based
analysis is provided by Clayton et al.4 Currently, the phase
information needed to determine the haplotypes of each
subject is not easily available but can be inferred partially
in a statistical way, by use of, for example, the expectation-
maximization algorithm.5 The uncertainty of haplotypes

leads to an inflated statistic variance and therefore reduces
the power of haplotype-based methods. A more severe
problem with haplotype-based analysis is that a large
number of degrees of freedom is often involved in the test
statistic. For example, a naive haplotype method is to code
haplotypes as a vector of indicators in which each element
corresponds to a possible haplotype. In this way, we obtain
a saturated model that lacks parsimony, and the number
of degrees of freedom can be up to for m SNP mark-m2 � 1
ers. When higher-order terms are not related to the caus-
ative locus—for example, if the genetic effects of several
variants do not depend on whether they are on the
same chromosome (cis) or on the opposite chromosome
(trans)—haplotype-based methods are not powerful, al-
though haplotypes capture most of the information. To
save some degrees of freedom, one direct method is to
classify haplotypes into groups. This method is often not
satisfactory in practice, because an appropriate classifica-
tion is not guaranteed when the genetic model is un-
known. Another method is to define and compare a hap-
lotype-similarity measure for cases and controls,6 which
has been shown to be very close to genotype-based
methods.7

Genotype-based methods lie between single-locus anal-
ysis and haplotype-based analysis, in that they uncover
more information about a causative locus than any single
SNP but without entailing an extremely large number of
degrees of freedom. One genotype-based method uses Ho-
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telling’s test,8 where the number of degrees of freedom2T
equals the number of SNPs. This statistic is equivalent to
applying a multivariate regression to simultaneously test
all the SNPs. In fact, each locus in a set of correlated SNPs
does not necessarily contain independent prediction in-
formation about the disease variant, and thus some of the
degrees of freedom of Hotelling’s test are wasted. In this2T
sense, it is not a surprise that single-locus analysis is more
powerful when one SNP is able to capture most of the
causative locus information. The dilemma of wanting
both more information and fewer degrees of freedom
raises the question of how best to develop new analytic
methods.

In this report, we develop a method that captures in-
formation from multiple correlated SNPs with the smallest
number of degrees of freedom. We propose to compress
the useful information provided by all the SNPs by using
a Fourier transform (FT) based on genotypic/haplotypic
scores and then to construct our statistic by basing it
mainly on informative components. We evaluate the
properties of our method by a simulation study.

We assume that n independent individuals are geno-
typed for m highly correlated SNPs in an association study.
Let individual i have trait value (e.g., if diseased,Y Y pi i

; otherwise, ) and genotype . For1 Y p 0 X p (X ,…,X )i i 1i mi

the genotype of individual i at the jth marker, can beXji

simply defined by the allele dosage ( , 1, or 2) forX p 0ji

an additive trait model or by or 1 for a dominantX p 0ji

or recessive model. With the assumption that the geno-
type affects only the mean of the phenotype measure and
not its scale, the relation between the trait and theYi

genetic markers may be represented by a generalized linear
regression model,

Th[E(Y )] p h p a � X b , (1)i i

where a denotes the regression intercept, is the trans-TXi

pose of Xi, b is a vector of the genetic effects of the SNP
markers, and h is the link function. The global association
between all SNP markers and the causative locus may be
examined by testing whether at least one for allb p 0j

. Following model (1), various statistics may be1 � j � m
established. For example, Schaid et al.9 derived a score
statistic, based on this model, that is equivalent to Ar-
mitage’s trend test in a case-control design. However, the
performance of this statistic may deteriorate, on account
of the accumulated noise from an increased number of
SNPs. Model (1) can also be directly used to handle hap-
lotype data. However, it can be worse for a haplotype-
based analysis, because the number of haplotypes can be
as high as .m2

An ideal analysis method must capture most of the use-
ful information with the fewest possible degrees of free-
dom. In the scenario of multiple correlated SNPs in a
block, the genotypic variation among trait groups is in-
tuitively expected to be across all SNPs, and the local var-

iation is more likely to be noise. For a case-control study,
similar genotypic differences between cases and controls
should be observed in most of the SNPs. Hence, it may
be useful to capture, with fewer degrees of freedom, only
the information that extends across SNPs. This could be
done by using an FT. The FT is a linear operator that maps
one set of functions to another set of functions. Loosely
speaking, the FT changes a function into its frequency
components. In our case, the lower-frequency compo-
nents should be the more informative ones for the purpose
of detecting association.

The sequence of m SNP genotypic values, , isX ,…,X1i mi

transformed into the sequence of m numbers, x ,…,0i

, by the discrete FT, according to the formulaxm�1,i

m�1
2pi

� kjx p X e k p 0,…,m � 1 ,m�ki ji
jp0

where . Here, we are interested only in the real�i p �1
parts of the FT coefficients, and the lowest-frequency com-
ponent is just the sum of the genotype values. In practice,
this transformation is easily done with the function pro-
vided by commonly used software packages, such as R and
metlab. For a set of SNPs in strong LD, we first recode the
genotypic values to obtain a matrix of SNP genotype cor-
relation coefficients that are positive. For example, if, for
two SNPs, the original genotype values yield a negative
correlation coefficient, we can use a complementary cod-
ing for one of the two. For instance, for an additive trait,
we change to , to obtain a positive coefficient.X d2 � X dji ji

In this way, the genotype variation among trait groups,
which is the information useful for detecting association,
is consistent across markers. Then, the association infor-
mation from the multiple SNPs can be compressed into
fewer dimensions by the FT. The process is illustrated in
figure 1. We can see that the original genotype differences
between cases and controls scatter across all SNPs (fig. 1A).
After recoding, the genotype scores between cases and
controls are more consistent (fig. 1B). In this example,
most of the genotype score information is further com-
pressed into the lowest component of the FT (fig. 1C). We
noted that this coding does not bias the subsequent test,
because it is independent of the trait values. In practice,
the FT is calculated by a fast algorithm called the “FFT.”

Following Schaid et al.,9 we can derive the score statistic
of an FT component x on the basis of model (1). If we let

be the kth FT component of subject i, the score isxki

n

¯U p Y (x � x ) ,�k i ki k
ip1

and the variance of can be estimated byUk

1 2 Tˆ ¯ ¯ ¯V p (Y � Y) (x � x ) (x � x ) ,� �k i ki k ki kn � 1 i i
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Figure 1. Compression of the genotypic differences among 100 controls and 100 cases by FT. Subjects 1–100 are the controls, and
subjects 101–200 are the cases. A, Original genotype values. B, Recoded genotype values. C, FT components.

where and are the sample means of the trait and the¯ ¯y xk

FT coefficient. This same score statistic can be used for
either discrete or continuous traits. Although it is derived
on the basis of a prospective likelihood, the score statistic
has been shown to be asymptotically equivalent to a sta-
tistic based on the retrospective likelihood, which ignores
trait selection.10

We consider a weighted score statistic to combine the
information from the FT coefficients. Intuitively, we
should use a weighted sum statistic that gives more weight
to lower-frequency components and less weight to higher-
frequency components. The weight function we consider
is for the kth component. Let be the esti-2[1/(k � 1)] V0

mated variance-covariance matrix of ,U p (U ,…,U )0 k�1

and let be the vector of weights. Since the FT compo-w
nents are asymptotically independent, is anx V m #ki 0

matrix with diagonals and off-diagonals 0. The globalˆm Vk

weighted score statistic is then

Tw U
T p ,w T�w V w0

and has an asymptotic standard normal distribution.Tw

We now compare several often-used tests with the
method we propose. The simplest global test for m SNPs
is to fit the regression one marker at a time. The P value
of the global test is then given by , with Bonferronimin(P )j
correction. We denote this procedure . Because of theTB

correlation between pairs of SNPs, Bonferroni correction
can be conservative. The global P value for the m regres-
sions can also be evaluated on the basis of a permutation
procedure by shuffling the trait values and maintaining
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Figure 2. LD-pattern color plot for simulations generated with
r sampled from a uniform distribution between 0.3 and 0.7. The
scale from lower values (yellow) to higher values (red) corresponds
to the increase in the absolute values of correlation.

Figure 3. Type I error rates of four tests with (A) andm p 4
(B) at the 5% level under different r values in simulations.m p 10

The solid horizontal line is the nominal 0.05 level. Analysis is
based on 100 cases and 100 controls, with r taking on the values
0.1, 0.2, 0.3,…, 0.8. The statistics , , , and are denotedT T T TB P H w

B, P, H, and W, respectively.

the dependence among the markers ( ). However, fittingTP

m regressions one at a time may fail when any single SNP
has limited information. In this case, it is helpful to fit
the regression model with multiple SNPs. We therefore
also investigate, by simulation, a likelihood-ratio test
based on logistic regression ( ).TH

We first perform a set of simulations to prove the con-
cept. The haplotypes for 4 and 10 correlated SNP markers
are simulated on the basis of a multivariate normal dis-
tribution with pairwise correlations r. Each allele on a
haplotype is generated by dichotomizing the normal dis-
tribution with the cutoff determined by an allele fre-
quency that is randomly sampled from a uniform distri-
bution between 0.2 and 0.8. The genotype value for each
individual is then generated to be the sum of two hap-
lotypes. We assume a multiplicative trait model with a
relative risk (RR) and with the frequency of the minor
allele at the causative SNP equal to p. We consider sam-
pling 100 cases and 100 controls. For each model, we sim-
ulate 1,000 data sets, and the permutation test is based
on 1,000 replicates of each data set. An unobserved caus-
ative SNP is simulated to be in the middle of all the SNPs.
We consider p in the range 0.1–0.4 and a multiplicative
model with RR ranging from 1 (for type I error rate) to 2.
The simulated LD patterns are defined by , where i andrij

j are the location index of markers and the trait locus on
the chromosome, respectively. In the power comparison,
we considered three scenarios: , , or rd i�j dr p 0.4 r p 0.8ij ij

is randomly sampled from a uniform distribution between
0.3 and 0.7. The scenario corresponds to an LDr p 0.4
pattern with each SNP providing similar information

about the disease locus. The scenario is similard i�j dr p 0.8
to an LD pattern in which LD is primarily a function of
marker distance. However, because of population phe-
nomena, such as genetic drift, mutation, nonrandom mat-
ing, and so forth, the actual LD pattern is more compli-
cated. To simulate this last scenario, we sample r from a
uniform distribution between 0.3 and 0.7. The LD patterns
for 4 and 10 SNPs sampled from this uniform distribution
are given in figure 2.

Simulations showed that all the tests had good control
of the 5% error rate when r was in the range 0.1�0.8 (fig.
3A and 3B). However, we found that the likelihood-ratio
test based on logistic regression tends to be slightly liberal
when the number of SNPs is large ( ). The increasedm p 10
type I error rate of this test is likely the result of small-
sample violation of asymptotic theory. Hence, we also ex-
amined the type I error rates for a sample size of 2,000
and found that the type I error rate of tends to be closerTH

to the nominal level. As expected, the single-locus analysis
with Bonferroni correction is conservative, but the effect
is slight.

The results of power calculations for andm p 4 m p
under a multiplicative model are shown in figures 410

and 5, respectively. We can see that the results for different
disease-allele frequencies (p), different LD patterns, and
different numbers of markers (m) display similar patterns
of empirical power. The proposed statistic is uniformlyTw

more powerful than single-locus analysis and multilocus
logistic analysis. Because the useful information across
multiple SNPs can be successfully compressed into fewer
components in our simulations, our statistic obtains a sub-
stantial gain in power by enjoying both fewer degrees of
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Figure 4. Empirical powers of different approaches with at the 5% level for a multiplicative model. The disease-allele frequencym p 4
is given by p (0.2, 0.3, or 0.4). A, . B, . C, r is sampled from a uniform distribution between 0.3 and 0.7. TheFi�jFr p 0.4 r p 0.8
statistics , , , and are denoted B, P, H, and W, respectively.T T T TB P H w

freedom and the use of information from multiple mark-
ers. The power gain of our statistic, compared with single-
locus analysis, comes from the additional information
used. We also found that the gain in power of is largestTw

when all markers have similar but little information about

a disease locus. The reason for this is that is expectedTP

to have very low power in this case, and our statistic is
more robust. Our simulation results showed that isTP

more powerful than because it avoids a conservativeTB

correction for multiple testing, although this gain was
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Figure 5. Empirical powers of different approaches with at the 5% level for a multiplicative model. The disease-allele frequencym p 10
is given by p (0.2, 0.3, or 0.4). A, . B, . C, r is sampled from a uniform distribution between 0.3 and 0.7. TheFi�jFr p 0.4 r p 0.8
statistics , , , and are denoted B, P, H, and W, respectively.T T T TB P H w

small in our simulations. Results also showed that isTP

often more powerful than multilocus logistic regression
analysis. By comparing figures 4 and 5, we can see that
the difference between our method and the logistic re-

gression method is more significant when the number of
markers is larger, suggesting that the logistic method is
more sensitive to the number of SNPs than ours is, because
of the increased degrees of freedom.
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Figure 6. Empirical powers of different approaches for a multi-
plicative model based on the real LD pattern of CHI3L2. The sta-
tistics , , , and are denoted B, P, H, and W, respectively.T T T TB P H w

We performed further simulations based on the real LD
pattern of the CHI3L2 gene (MIM 601256), which can be
visualized on the HapMap site. We downloaded the ge-
notype data for all SNPs in the CHI3L2 gene for 90 subjects
from the HapMap database. We focused on the 22 SNPs
with allele frequency 10.2. Each SNP was coded so that as
many as possible of their pairwise correlations are positive.
We arbitrarily assumed that the SNP located at the fifth
position (rs2182114) is the functional mutation. We set

, which, given the allele frequencies, resulted inRR p 1.4
a prevalence of 7.6%. We first simulated the genotypes of
the mutation for 200 cases and 200 controls. To keep the
real LD pattern, we then generated the genotypes for all
other 21 SNPs by resampling from the 90 individuals with
the same genotype at the mutation. We compared tests
when the mutation was typed, when the mutation was
not typed, and when only four tagging SNPs (tSNPs)
(rs7366568, rs8535, rs2477574, and rs11102221) were
typed. The empirical power of the tests for the real LD
pattern is shown in figure 6. We found that the proposed
test was the most powerful in all three cases. Because most
of the SNPs in CHI3L2 are in strong LD, we found that
the power of each of the statistics was quite similar, re-
gardless of whether the mutation was typed. We also saw,
for each of the statistics, that the use of tSNPs results in
maximum or close-to-maximum power. This result shows
that, when the extra information provided by additional
SNPs is limited, because of the increased degrees-of-free-
dom typing, more SNPs do not necessarily improve power
for either single-locus or multilocus analysis.

Recognizing that disease-association information tends
to extend over multiple SNPs in a block and that the local
variation among trait groups is more likely to be noise,
we have proposed a weighted score statistic based on the
FT. The FT has been widely applied in electrical engi-
neering—for example, for image processing. Applications
of the FT include removal of noise by eliminating unde-
sirable high- or low-frequency components and image
compression. Here, we have applied the FT to compress
the useful association information from the genotype val-
ues of a set of SNPs. We have demonstrated its usefulness
in those cases, through simulation studies. Single-locus
analysis is usually thought to lack power because of the
lower capability of a SNP to predict a disease locus. Sur-
prisingly, our simulation results show that the single-locus
analysis is at least as good as a logistic regression analysis
that simultaneously tests multiple SNPs, which is equiv-
alent to Hotelling’s test. A similar result was found by2T
Roeder et al.11 The loss in power of logistic regression anal-
ysis or Hotelling’s test becomes more obvious when the2T
number of markers is large and the correlation between
markers is strong, because the penalty in power from hav-
ing a large number of degrees of freedom is severe in these
cases. Our method has the advantages of both making use
of multiple SNP information and having a small number
of degrees of freedom. Therefore, we saw, in our simula-

tions, that this method has power superior to that of the
other two methods.

The proposed method, like any other method, has its
limitations and is not optimal in all situations. Since our
method greatly down-weights the contribution from high-
frequency components, it should be expected to have low
power in the case of an association signal that is not con-
sistent across SNPs—for example, when a signal is domi-
nant at a single SNP. It is expected that single-locus anal-
ysis will be most powerful in this scenario. Our method
is similar in spirit to other methods that borrow infor-
mation from neighboring correlated SNPs.12–15 When a sin-
gle SNP itself has full association information, all such
methods tend to smooth down the largest local signal,
which leads to loss of power. The difference between our
method and other methods is that they involve averaging
of local association signals, whereas our method smooths
the genotype values directly. It is feasible to choose a
weight function from various functions for the proposed
statistic, although we considered only one possibility in
our simulations. We expect that there is no uniformly
optimal weight function for all cases. Further work to de-
velop a data-driven adaptive version of our method could
be useful. One option is to use a threshold method to
capture several informative dimensions that are not nec-
essarily the low-frequency components. Another limita-
tion of our method is that it does not account for high-
order information included in the haplotypes. Although
it has been shown that it is beneficial to jointly analyze
genotype data because this reduces the degrees of free-
dom,7 the information from haplotypes becomes critical
when the genetic effects of several mutations at different
loci depend on whether they are in the cis or trans posi-
tion. It is desirable to develop new methods, or to extend
current methods, to compress all the information into a
few dimensions.

In summary, we have developed a new weighted score
statistic based on FT coefficients to globally test a set of
correlated tSNPs (Weighted Score Statistic Web site). Our
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method can be used for either discrete or continuous
traits. Our simulations have demonstrated its substantially
higher power.
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